Cart (Loading....) | Create Account
Close category search window
 

A novel immunosensing technique based on the thermal properties of biochemicals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhang, Yuyan ; Dept. of Electr. Eng., Penn State Univ., University Park, PA ; Tadigadapa, S.

A new and independent method to investigate biological reactions and their products based upon the accurate and real-time measurement of the thermal conductivity of the reacting samples is presented. A micromachined thermopile based thermal sensor integrated with a planar heater and microfluidic channel has been fabricated for these measurements. The device was calibrated by measuring the thermal conductivity of standard fluids such as DI water and isopropyl alcohol. The calibrated device was then used to measure the thermal properties of biological molecules such as glucose, urea, Bovine Serum Albumin (BSA), Human Fibrinogen (HF), their antibodies, and the bound product. To the best of our knowledge, this is the first report of the observation of the real-time monitoring of antibody-antigen binding based on the change in the thermal properties of the reacting fluids

Published in:

Sensors, 2005 IEEE

Date of Conference:

Oct. 30 2005-Nov. 3 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.