By Topic

A microscopic interpretation of the RF noise performance of fabricated FDSOI MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Raul Rengel ; Dept. de Fisica Aplicada, Univ. de Salamanca, Spain ; M. J. Martin ; T. Gonzalez ; J. Mateos
more authors

In this paper, a detailed research of the high-frequency noise sources and figures of merit (FOMs) of fabricated deep-submicrometer n-channel fully depleted silicon-on-insulator MOSFETs is carried out. Special care is given to reproduce the main topology parameters, together with the most relevant parasitic elements of real devices in order to accomplish an accurate and reliable simulation. The information provided by the Monte Carlo (MC) tool allows getting a physical insight of the relationship between internal quantities and the main noise sources inside the device; moreover, the spectral density of velocity fluctuations has been analyzed spatially in order to determine the local current noise source in the gradual channel and velocity overshoot sections of the effective channel. Together with the calculation of intrinsic noise sources, the MC simulator is able to reproduce the measurements for the main noise FOMs in the RF and microwave frequency ranges. Moreover, the whole simulation framework allows addressing the importance of parasitic elements in the final value of these FOMs.

Published in:

IEEE Transactions on Electron Devices  (Volume:53 ,  Issue: 3 )