By Topic

Modified local discriminant bases algorithm and its application in analysis of human knee joint vibration signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Umapathy, K. ; Dept. of Electr. & Comput. Eng., Univ. of Western Ontario, London, Ont., Canada ; Krishnan, S.

Knee joint disorders are common in the elderly population, athletes, and outdoor sports enthusiasts. These disorders are often painful and incapacitating. Vibration signals [vibroarthrographic (VAG)] are emitted at the knee joint during the swinging movement of the knee. These VAG signals contain information that can be used to characterize certain pathological aspects of the knee joint. In this paper, we present a noninvasive method for screening knee joint disorders using the VAG signals. The proposed approach uses wavelet packet decompositions and a modified local discriminant bases algorithm to analyze the VAG signals and to identify the highly discriminatory basis functions. We demonstrate the effectiveness of using a combination of multiple dissimilarity measures to arrive at the optimal set of discriminatory basis functions, thereby maximizing the classification accuracy. A database of 89 VAG signals containing 51 normal and 38 abnormal samples were used in this study. The features extracted from the coefficients of the selected basis functions were analyzed and classified using a linear-discriminant-analysis-based classifier. A classification accuracy as high as 80% was achieved using this true nonstationary signal analysis approach.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:53 ,  Issue: 3 )