By Topic

Magnetic stimulation of curved nerves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rotem, A. ; Weizmann Inst. of Sci., Israel ; Moses, E.

Magnetic stimulation of nerves is attracting increased attention recently, as it has been found to be useful in therapy of neural disorders in humans. In an effort to explain the mechanisms of magnetic stimulation, we focus in this paper on the dependence of magnetic stimulation on neuronal morphology and in particular on the importance of curvature of axonal bundles. Using the theory of passive membrane dynamics, we predict the threshold power (the minimum stimulation power required to initiate an action potential) of specific axonal morphologies. In the experimental section, we show that magnetic stimulation of the frog sciatic nerve follows our theoretical predictions. Furthermore, the voltage length constant of the nerve can be measured based on these results alone.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:53 ,  Issue: 3 )