System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

WindSat radio-frequency interference signature and its identification over land and ocean

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Li, L. ; Naval Res. Lab., Washington, DC, USA ; Gaiser, P.W. ; Bettenhausen, M.H. ; Johnston, W.

Radio-frequency interference (RFI) in the spaceborne multichannel radiometer data of WindSat and the Advanced Microwave Scanning Radiometer-EOS is currently being detected using a spectral difference technique. Such a technique does not explicitly utilize multichannel correlations of radiometer data, which are key information in separating RFI from natural radiations. Furthermore, it is not optimal for radiometer data observed over ocean regions due to the inherent large natural variability of spectral difference over ocean. In this paper, we first analyzed multivariate WindSat and Scanning Multichannel Microwave Radiometer (SMMR) data in terms of channel correlation, information content, and principal components of WindSat and SMMR data. Then two methods based on channel correlation were developed for RFI detection over land and ocean. Over land, we extended the spectral difference technique using principal component analysis (PCA) of RFI indices, which integrates statistics of target emission/scattering characteristics (through RFI indices) and multivariate correlation of radiometer data into a single statistical framework of PCA. Over ocean, channel regression of X-band can account for nearly all of the natural variations in the WindSat data. Therefore, we use a channel regression-based model difference technique to directly predict RFI-free brightness temperature, and therefore RFI intensity. Although model difference technique is most desirable, it is more difficult to apply over land due to heterogeneity of land surfaces. Both methods improve our knowledge of RFI signatures in terms of channel correlations and explore potential RFI mitigation, and thus provide risk reductions for future satellite passive microwave missions such as the NPOESS Conical Scanning Microwave Imager/Sounder. The new RFI algorithms are effective in detecting RFI in the C- and X-band Windsat radiometer channels over land and ocean.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:44 ,  Issue: 3 )