By Topic

Multiobjective design optimization of air-core linear permanent-magnet synchronous motors for improved thrust and low magnet consumption

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vaez-Zadeh, S. ; Dept. of Electr. & Comput. Eng., Tehran Univ., Iran ; Isfahani, A.H.

Although air-core linear permanent-magnet (PM) synchronous motors are widely used in precision applications because of their advantages such as fast dynamics, lack of detent force, and negligible iron loss, they basically suffer from low developed thrust, thrust ripple, and excessive use of permanent-magnet materials, all of which lead to undesirable performance and high production cost. In this paper, we analyze performance characteristics of an air-core linear PM synchronous motor by varying motor design parameters in a layer model and a d-q model of the machine. We propose a multiobjective design optimization to improve thrust, thrust ripple, and consumed magnet volume independently and simultaneously by defining a flexible objective function. A genetic algorithm is employed to search for optimal designs. The results confirm that desirable thrust mean and substantial reduction in magnet volume and thrust ripple can be achieved. We draw several design conclusions from the motor analysis and design optimization. Finally, we carry out a time-stepping finite-element analysis to evaluate the effectiveness of the machine models and the optimization method.

Published in:

Magnetics, IEEE Transactions on  (Volume:42 ,  Issue: 3 )