By Topic

Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Lateb ; Groupe de Recherches en Electronique et Electrotechnique, (GREEN)-INPL-CNRS, Vandoeuvre les Nancy, France ; N. Takorabet ; F. Meibody-Tabar

We present a method that minimizes the cogging torque in rotor surface mounted permanent-magnet motors. The key idea is to set the distribution of the air-gap flux density by segmenting the magnet pole into several elementary magnet blocks. By choosing either the appropriate elementary magnet block span or the relative position of the magnet blocks, the cogging torque may be significantly reduced. Our analytical approach uses Fourier series to predict the cogging torque harmonics, and finite-element computations. Our numerical results confirm the analytical conclusions.

Published in:

IEEE Transactions on Magnetics  (Volume:42 ,  Issue: 3 )