By Topic

Belief rule-base inference methodology using the evidential reasoning Approach-RIMER

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jian-Bo Yang ; Decision Sci. & Oper.s Manage. Group, Univ. of Manchester, UK ; Jun Liu ; Jin Wang ; How-Sing Sii
more authors

In this paper, a generic rule-base inference methodology using the evidential reasoning (RIMER) approach is proposed. Existing knowledge-base structures are first examined, and knowledge representation schemes under uncertainty are then briefly analyzed. Based on this analysis, a new knowledge representation scheme in a rule base is proposed using a belief structure. In this scheme, a rule base is designed with belief degrees embedded in all possible consequents of a rule. Such a rule base is capable of capturing vagueness, incompleteness, and nonlinear causal relationships, while traditional if-then rules can be represented as a special case. Other knowledge representation parameters such as the weights of both attributes and rules are also investigated in the scheme. In an established rule base, an input to an antecedent attribute is transformed into a belief distribution. Subsequently, inference in such a rule base is implemented using the evidential reasoning (ER) approach. The scheme is further extended to inference in hierarchical rule bases. A numerical study is provided to illustrate the potential applications of the proposed methodology.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:36 ,  Issue: 2 )