By Topic

Transient recognition control for hybrid fuel cell systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tao Zhu ; Dept. of Electr. & Comput. Eng., Montana State Univ., Bozeman, MT, USA ; Shaw, S.R. ; Leeb, S.B.

Hybrid power systems combining fuel cells with fast energy storage devices are good solutions to the fuel cell load-following problem. Hybrid systems may also offer efficiency and reliability advantages. In this paper, we propose a power control scheme for hybrid systems that exploits feed-forward information about the steady-state behavior of incoming load transients. The method uses a modified cluster-weighted modeling (CWM) algorithm to build a load transient recognition model. The model is formulated sequentially and can provide useful feed-forward information in real time. Simulation and experimental results are provided that demonstrate the effectiveness of the transient recognition model and the proposed power control scheme for hybrid fuel cell systems.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:21 ,  Issue: 1 )