By Topic

Automatic diagnosis and location of open-switch fault in brushless DC motor drives using wavelets and neuro-fuzzy systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. A. Awadallah ; Dept. of Electr. & Comput. Eng., Kansas State Univ., Manhattan, KS, USA ; M. M. Morcos

The faulty performance of permanent-magnet (PM) brushless dc motor drives is studied under open-switch conditions. The wavelet transform is used to extract diagnostic indices from the current waveform of the motor dc link. An intelligent agent based on adaptive neuro-fuzzy inference systems (ANFIS) is developed to automate the fault identification and location process. ANFIS is trained offline using simulation results under various healthy and faulty conditions obtained from a lumped-parameter, network model. ANFIS testing shows that the system could not only detect the open-switch fault, but also identify the faulty switch. Good agreement between simulation results and measured waveforms confirms the effectiveness of the proposed methodology.

Published in:

IEEE Transactions on Energy Conversion  (Volume:21 ,  Issue: 1 )