By Topic

107-mW low-noise green-light emission by frequency doubling of a reliable 1060-nm DFB semiconductor laser diode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Hong Ky Nguyen ; Sci. & Technol. Div., Corning Inc., NY, USA ; M. H. Hu ; N. Nishiyama ; N. J. Visovsky
more authors

We have generated 107-mW green-light emission by frequency doubling of a reliable 1060-nm distributed feedback (DFB) laser diode using a periodically poled MgO-doped lithium niobate waveguide in the most compact single-pass configuration. The green power variation is lower than 1% at frequencies below 82 kHz. The relative intensity noise of -150 dB/Hz has been measured at 100 MHz. We also report 5000-h life-test results of 1060-nm DFB lasers at 80°C.

Published in:

IEEE Photonics Technology Letters  (Volume:18 ,  Issue: 5 )