By Topic

Robust glottal source estimation based on joint source-filter model optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

This paper describes a robust glottal source estimation method based on a joint source-filter separation technique. In this method, the Liljencrants-Fant (LF) model, which models the glottal flow derivative, is integrated into a time-varying ARX speech production model. These two models are estimated in a joint optimization procedure, in which a Kalman filtering process is embedded for adaptively identifying the vocal tract parameters. Since the formulated joint estimation problem is a multiparameter nonlinear optimization procedure, we separate the optimization procedure into two passes. The first pass initializes the glottal source and vocal tract models by solving a quasi-convex approximate optimization problem. Having robust initial values, the joint estimation procedure determines the accuracy of model estimation implemented with a trust-region descent optimization algorithm. Experiments with synthetic and real voice signals show that the proposed method is a robust glottal source parameter estimation method with a high degree of accuracy.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:14 ,  Issue: 2 )