By Topic

Output-feedback semiglobal stabilization of stall dynamics for preventing hysteresis and surge in axial-flow compressors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chaturvedi, N.A. ; Dept. of Aerosp. Eng., Univ. of Michigan, Ann Arbor, MI, USA ; Bhat, S.

This paper deals with the use of feedback control to prevent hysteresis and surge in axial-flow compressors. We present a dynamic output-feedback controller that semiglobally stabilizes every rotating stall equilibrium, and a range of axisymmetric equilibria of the Moore-Greitzer model for axial-flow compressors. The dynamic controller combines a two-state-variable-feedback backstepping controller from the literature with a nonlinear, reduced order, high-gain observer that estimates the mass flow through the compressor from measurements of the pressure rise across it. Given an equilibrium and a compact inner bound on the domain of attraction, we use Lyapunov techniques to compute an explicit lower bound on the observer gain such that the specified equilibrium is asymptotically stable for the closed-loop system, with a domain of attraction that contains the specified inner bound. We use a numerical example to illustrate how the inner bound on the domain of attraction can be specified so that the closed-loop compressor does not exhibit hysteresis and surge oscillations even in response to changes in the throttle setting that are dictated by large and sudden changes in the desired operating point. Simulation results are used to demonstrate the absence of hysteresis and surge in the closed-loop compressor dynamics.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:14 ,  Issue: 2 )