By Topic

Device and circuit level optimization for high performance a-Si:H TFT-based AMOLED displays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sambandan, S. ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Ont., Canada ; Striakhilev, D. ; Nathan, A.

Active matrix organic light-emitting diode (AMOLED) displays with amorphous hydrogenated silicon (a-Si:H) thin-film transistor (TFT) backplanes are becoming the state of art in display technology. Though a-Si:H TFTs suffer from an intrinsic device instability, which inturn leads to an instability in pixel brightness, there have been many pixel driving methods that have been introduced to counter this. However, there are issues with these circuits which limit their applicability in terms of speed and resolution. This paper highlights these issues and provides detailed design considerations for the choice of pixel driver circuits in general. In particular, we discuss the circuit and device level optimization of the pixel driver circuit in a-Si:H TFT AMOLED, displays for high gray scale accuracy, subject to constraints of power consumption, and temporal and spatial resolution.

Published in:

Display Technology, Journal of  (Volume:2 ,  Issue: 1 )