Cart (Loading....) | Create Account
Close category search window
 

Principal axis-based correspondence between multiple cameras for people tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Weiming Hu ; Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China ; Min Hu ; Xue Zhou ; Tieniu Tan
more authors

Visual surveillance using multiple cameras has attracted increasing interest in recent years. Correspondence between multiple cameras is one of the most important and basic problems which visual surveillance using multiple cameras brings. In this paper, we propose a simple and robust method, based on principal axes of people, to match people across multiple cameras. The correspondence likelihood reflecting the similarity of pairs of principal axes of people is constructed according to the relationship between "ground-points" of people detected in each camera view and the intersections of principal axes detected in different camera views and transformed to the same view. Our method has the following desirable properties; 1) camera calibration is not needed; 2) accurate motion detection and segmentation are less critical due to the robustness of the principal axis-based feature to noise; 3) based on the fused data derived from correspondence results, positions of people in each camera view can be accurately located even when the people are partially occluded in all views. The experimental results on several real video sequences from outdoor environments have demonstrated the effectiveness, efficiency, and robustness of our method.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 4 )

Date of Publication:

April 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.