By Topic

A discriminative learning framework with pairwise constraints for video object classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rong Yan ; Language Technol. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Jian Zhang ; Jie Yang ; Hauptmann, A.G.

To deal with the problem of insufficient labeled data in video object classification, one solution is to utilize additional pairwise constraints that indicate the relationship between two examples, i.e., whether these examples belong to the same class or not. In this paper, we propose a discriminative learning approach which can incorporate pairwise constraints into a conventional margin-based learning framework. Different from previous work that usually attempts to learn better distance metrics or estimate the underlying data distribution, the proposed approach can directly model the decision boundary and, thus, require fewer model assumptions. Moreover, the proposed approach can handle both labeled data and pairwise constraints in a unified framework. In this work, we investigate two families of pairwise loss functions, namely, convex and nonconvex pairwise loss functions, and then derive three pairwise learning algorithms by plugging in the hinge loss and the logistic loss functions. The proposed learning algorithms were evaluated using a people identification task on two surveillance video data sets. The experiments demonstrated that the proposed pairwise learning algorithms considerably outperform the baseline classifiers using only labeled data and two other pairwise learning algorithms with the same amount of pairwise constraints.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 4 )