Cart (Loading....) | Create Account
Close category search window
 

Selection of generative models in classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bouchard, G. ; Xerox Res. Centre Eur., Meylan, France ; Celeux, G.

This paper is concerned with the selection of a generative model for supervised classification. Classical criteria for model selection assess the fit of a model rather than its ability to produce a low classification error rate. A new criterion, the Bayesian entropy criterion (BEC), is proposed. This criterion takes into account the decisional purpose of a model by minimizing the integrated classification entropy. It provides an interesting alternative to the cross-validated error rate which is computationally expensive. The asymptotic behavior of the BEC criterion is presented. Numerical experiments on both simulated and real data sets show that BEC performs better than the BIC criterion to select a model minimizing the classification error rate and provides analogous performance to the cross-validated error rate.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 4 )

Date of Publication:

April 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.