By Topic

A genetic algorithm using hyper-quadtrees for low-dimensional k-means clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Laszlo, M. ; Graduate Sch. of Comput. & Inf. Sci., Nova Southeastern Univ., Fort Lauderdale, FL, USA ; Mukherjee, S.

The k-means algorithm is widely used for clustering because of its computational efficiency. Given n points in d-dimensional space and the number of desired clusters k, k-means seeks a set of k-cluster centers so as to minimize the sum of the squared Euclidean distance between each point and its nearest cluster center. However, the algorithm is very sensitive to the initial selection of centers and is likely to converge to partitions that are significantly inferior to the global optimum. We present a genetic algorithm (GA) for evolving centers in the k-means algorithm that simultaneously identifies good partitions for a range of values around a specified k. The set of centers is represented using a hyper-quadtree constructed on the data. This representation is exploited in our GA to generate an initial population of good centers and to support a novel crossover operation that selectively passes good subsets of neighboring centers from parents to offspring by swapping subtrees. Experimental results indicate that our GA finds the global optimum for data sets with known optima and finds good solutions for large simulated data sets.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 4 )