By Topic

Robust route optimization for gritting/salting trucks: a CERCIA experience

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
H. Handa ; Okayama Univ., Japan ; L. Chapman ; Xin Yao

Highway authorities in marginal winter climates are responsible for the precautionary gritting/salting of the road network in order to prevent frozen roads. For efficient and effective road maintenance, accurate road surface temperature prediction is required. However, this information is useless if an effective means of utilizing this information is unavailable. This is where gritting route optimization plays a crucial role. The decision whether to grit the road network at marginal nights is a difficult problem. The consequences of making a wrong decision are serious, as untreated roads are a major hazard. However, if grit/salt is spread when it is not actually required, there are unnecessary financial and environmental costs. The goal here is to minimize the financial and environmental costs while ensuring roads that need treatment will. In this article, a salting route optimization (SRO) system that combines evolutionary algorithms with the neXt generation Road Weather Information System (XRWIS) is introduced. The synergy of these methodologies means that salting route optimization can be done at a level previously not possible.

Published in:

IEEE Computational Intelligence Magazine  (Volume:1 ,  Issue: 1 )