Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Interaction of electromagnetic waves with general bianisotropic slabs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tsalamengas, J.L. ; Dept. of Electr. Eng., Nat. Univ. of Athens, Greece

An efficient, elegant, and systematic formulation technique which, combining Fourier transform with matrix analysis methods, is suitable for problems related to radiation by dipole or other sources in the presence of an arbitrarily general stratified anisotropic medium has been recently developed. This technique is adapted further extended to allow the presence of general bianisotropic media described by four tensors with no limitations on their elements. Two specific applications pertaining to some canonical problems of fundamental importance are included to exemplify the method and demonstrate its usefulness: radiation by an arbitrarily oriented elementary electric dipole source located in the vicinity of a general bianisotropic slab, either grounded or ungrounded, leading to the expressions of the dyadic Green's function of the structure, and reflection and transmission of an arbitrarily polarized plane wave incident upon such a slab, leading to closed-form concise expressions for the reflection and transmission coefficient matrices

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:40 ,  Issue: 10 )