By Topic

Efficient Coxian Duration Modelling for Activity Recognition in Smart Environments with the Hidden semi-Markov Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Duong, T.V. ; Department of Computing, Curtin University of Technology, Perth, WA 6102, ; Phung, D.Q. ; Bui, H.H. ; Venkatesh, S.

In this paper, we exploit the discrete Coxian distribution and propose a novel form of stochastic model, termed as the Coxian hidden semi-Makov model (Cox-HSMM), and apply it to the task of recognising activities of daily living (ADLs) in a smart house environment. The use of the Coxian has several advantages over traditional parameterization (e.g. multinomial or continuous distributions) including the low number of free parameters needed, its computational efficiency, and the existing of closed-form solution. To further enrich the model in real-world applications, we also address the problem of handling missing observation for the proposed Cox-HSMM. In the domain of ADLs, we emphasize the importance of the duration information and model it via the Cox-HSMM. Our experimental results have shown the superiority of the Cox-HSMM in all cases when compared with the standard HMM. Our results have further shown that outstanding recognition accuracy can be achieved with relatively low number of phases required in the Coxian, thus making the Cox-HSMM particularly suitable in recognizing ADLs whose movement trajectories are typically very long in nature.

Published in:

Intelligent Sensors, Sensor Networks and Information Processing Conference, 2005. Proceedings of the 2005 International Conference on

Date of Conference:

5-8 Dec. 2005