By Topic

Surface curvature based automatic human face feature extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jing Wang ; Graduate Sch. of IPS, Waseda Univ., Fukuoka, Japan ; Yanning Zhang ; Goto, S.

3D face models provide more robust shape information of facial features than intensity or color in 2D images. However, many current facial feature extraction methods on 3D face models still depend on human instruction. This paper proposes an automatic human face feature extraction method adaptive to 3D face models in various poses and various scales based on analysis of surface curvature and a priori knowledge of human face structure. Moreover, during processing of segmented regions on 3D model, a novel region processing approach, called "combine and split", is proposed to significantly reduce undependable candidate regions for facial organs from hundreds to around ten. Experimental results demonstrate that proposed method can effectively extract eye, nose, mouth and ear regions from various 3D face models.

Published in:

Intelligent Signal Processing and Communication Systems, 2005. ISPACS 2005. Proceedings of 2005 International Symposium on

Date of Conference:

13-16 Dec. 2005