Cart (Loading....) | Create Account
Close category search window
 

Variable bandwidth birefringent filter for stable femtosecond lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Naganuma, Kazunori ; Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA ; Lenz, Gadi ; Ippen, E.P.

A design for a birefringent filter is described, which is suitable for tunable femtosecond lasers. Using a single plate, which has a steeply diving optic axis, two-octave tunability is attained with negligible deterioration of the stopband rejection. For a specific wavelength region, it means that the filter's bandwidth can be changed by a factor of four. Another characteristic of the design is that, for the same bandwidth, the proposed plate is five times thicker than a conventional plate in which the optic axis is parallel to the surface. Thus, etalon effects can be avoided. Tuning characteristics of color center lasers utilizing the new filter are also presented

Published in:

Quantum Electronics, IEEE Journal of  (Volume:28 ,  Issue: 10 )

Date of Publication:

Oct 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.