Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

On-chip single-cell-based gene expression analysis using gold nano-particles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Hyonchol Kim ; Dept. of Life Sci., Tokyo Univ., Japan ; Kira, A. ; Kohno, H. ; Matsumura, K.
more authors

The authors have developed a novel method to measure the quantitative amount of mRNA expression in individual cells keeping their spatial distributions in the cell without any amplification process like PCR. In this method, a set of different sizes of gold nanoparticles attached with different probe-DNA respectively were used as a set of probes to detect different mRNAs existing in a cell. At first, the optimum condition of the immobilization of probe-DNA onto the gold nanoparticle surface was examined. Next, the selectivity of the probe-DNA immobilized onto the nanoparticle was tested using complementary oligonucleotide molecules. We confirmed the several different kinds of gold nanoparticle probes were hybridized with target oligonucleotides having complementary sequences with almost 100% selectively. For the counting and distinguishing each of the gold nanoparticles, we used two different methods and compared: one is atomic force microscopy and the other is scanning electron microscopy. Quantitative detection of mRNAs in individual cells keeping their spatial distributions was then examined using the gold nanoparticle-based detection system. In this meeting, we will present the results and will discuss about the potential and problems of this method for the single-cell-based quantitative expression analysis.

Published in:

Microprocesses and Nanotechnology Conference, 2005 International

Date of Conference:

25-28 Oct. 2005