By Topic

Reverse Engineering Non-Linear Gene Regulatory Networks Based on the Bacteriophage λ cI Circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Supper ; Centre for Bioinformatics (ZBIT) University of Tübingen Sand 1, 72076 Tübingen, Germany, Email: ; C. Spieth ; A. Zell

The ability to measure the transcriptional response of cells has drawn much attention to the underlying transcriptional networks. To untangle the network, numerous models with corresponding reverse engineering methods have been applied. In this work, we propose a non-linear model with adjustable degrees of complexity. The corresponding reverse engineering method uses a probabilistic scheme to reduce the reconstruction problem to subnetworks. Adequate models for gene regulatory networks must be anchored on sufficient biological knowledge. Here, the cI auto-inhibition circuit (cI circuit) is used to validate our reverse engineering method. Simulations of the cI circuit are used for the reconstruction, whereas a simplified cI circuit model assists the modeling phase. Several levels of complexity are evaluated, subsequently the reconstructed models show different properties. As a result, we reconstruct an abstract model, capturing the dynamic behavior of the cI circuit to a high degree.

Published in:

2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology

Date of Conference:

15-15 Nov. 2005