By Topic

Protein-Protein Interaction Prediction Based on Sequence Data by Support Vector Machine with Probability Assignment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiankuan Ye ; Department of Computer Science, Rutgers University, Piscataway, NJ, 08854, USA, Email: jiye@cs.rutgers.edu ; C. Kulikowski ; I. Muchnik

In this paper, we investigate the sequence-based protein-protein interaction prediction by machine learning methods. Specifically, we propose to build classifiers in the space of domain pairs, which are purely based on sequence data. We designed a novel way to select negative samples using a classification-based iterative voting procedure, and systematically compared the effects of negative sample selection on the performance of classification. We also propose an approach to estimate the probabilities for the predictions by SVM. Based on the selected negative samples, we compared nonlinear SVM based on gaussian kernel, linear SVM and linear logistic regression for both classification performance and probability assignments. Our results show that the probability assigned by SVM is more natural than logistic regression, and SVM also outperforms logistic regression for prediction.

Published in:

2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology

Date of Conference:

14-15 Nov. 2005