Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Feedback Memetic Algorithms for Modeling Gene Regulatory Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Spieth, C. ; Centre for Bioinformatics University of Tübingen Sand 1, 72076 Tübingen, Germany, email: spieth@informatik.uni-tuebingen.de ; Streichert, F. ; Supper, J. ; Speer, N.
more authors

In this paper we address the problem of finding gene regulatory networks from experimental DNA microarray data. We focus on the evaluation of the performance of memetic algorithms on the inference problem. These algorithms are used to evolve an underlying quantitative mathematical model. The dynamics of the regulatory system are modeled with two commonly used approaches, namely linear weight matrices and S-systems. Due to the complexity of the inference problem, some researchers suggested evolutionary algorithms for this purpose. We introduce memetic enhancements to this optimization process to infer the parameters of sparsely connected nonlinear systems from the observed data. Due to the limited number of available data, the inferring problem is underdetermined and ambiguous. Further on, the problem often is multimodal and therefore appropriate optimization strategies become necessary. We propose a memetic method, which separates the overall inference problem into two subproblems to find the correct network: first, the search for a valid topology, and secondly, the optimization of the parameters of the mathematical model. The performance and the properties of the proposed methods are evaluated and compared to standard algorithms found in the literature.

Published in:

Computational Intelligence in Bioinformatics and Computational Biology, 2005. CIBCB '05. Proceedings of the 2005 IEEE Symposium on

Date of Conference:

14-15 Nov. 2005