By Topic

Using speculative computation and parallelizing techniques to improve scheduling of control based designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cordone, R. ; Univ. Statale di via Bramante, Crema ; Feffandi, F. ; Santambrogio, M.D. ; Palermo, G.
more authors

Recent research results have seen the application of parallelizing techniques to high-level synthesis. In particular, the effect of speculative code transformations on mixed control-data flow designs has demonstrated effective results on schedule lengths. In this paper we first analyze the use of the control and data dependence graph as an intermediate representation that provides the possibility of extracting the maximum parallelism. Then we analyze the scheduling problem by formulating an approach based on Integer Linear Programming (ILP) to minimize the number of control steps given the amount of resources. We improve the already proposed ILP scheduling approaches by introducing a new conditional resource sharing constraint which is then extended to the case of speculative computation. The ILP formulation has been solved by using a Branch and Cut framework which provides better results than standard branch and bound techniques

Published in:

Design Automation, 2006. Asia and South Pacific Conference on

Date of Conference:

24-27 Jan. 2006