By Topic

Integral-observer-based chaos synchronization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guo-ping Jiang ; Coll. of Autom., Nanjing Univ. of Posts & Telecommun., China ; Wei Xing Zheng ; Wallace Kit-sang Tang ; Guanrong Chen

In this paper, a new scheme based on integral observer approach is designed for a class of chaotic systems to achieve synchronization. Unlike the proportional observer approach, the proposed scheme is demonstrated to be effective under a noisy environment in the transmission channel. Based on the Lyapunov stability theory, a sufficient condition for synchronization is derived in the form of a Lyapunov inequality. This Lyapunov inequality is further transformed into a linear matrix inequality (LMI) form by using the Schur theorem and some matrix operation techniques, which can be easily solved by the LMI toolboxes for the design of suitable control gains. It is demonstrated with the Murali-Lakshmanan-Chua system that a better noise suppression and a faster convergence speed can be achieved for chaos synchronization by using this integral observer scheme, as compared with the traditional proportional observer approach.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:53 ,  Issue: 2 )