By Topic

Critical stability constraints for discrete-time linear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bistritz, Y. ; Dept. of Electr. Eng., Tel Aviv Univ., Israel

Critical stability constraints are a small set of conditions that are enough to maintain the stability of a system when some parameters are perturbed from a nominal stable setting. The paper uses a recently introduced efficient integer-preserving (IP) form of the Bistritz test to derive critical constraints for stability of discrete-time linear systems. The new procedure produces polynomial (rather than rational) constraints of particularly low degree whose variates are the free parameters (or the literal coefficients) of the system's characteristic polynomial. Comparison with the modified Jury test, also an efficient IP stability test, shows that the constraints are obtained with less computation and, more contributing to simplicity, the constraints appear as polynomials with degrees lower by a factor of two.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:53 ,  Issue: 2 )