Cart (Loading....) | Create Account
Close category search window
 

Dispersion and modulation of the linear optical properties of GaAs-AlAs superlattice waveguides using quantum-well intermixing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kleckner, T.C. ; Lumerical Solutions Inc., Vancouver, BC, Canada ; Helmy, A.S. ; Zeaiter, K. ; Hutchings, D.C.
more authors

We report on the large modulation of the optical properties of a 14:14 monolayer GaAs-AlAs superlattice waveguide following quantum-well intermixing. Low-temperature photoluminescence measurements illustrate a large 169-meV differential blue-shift obtained between the disordering-suppressed and disordering-enhanced materials. Effective index measurements are presented as a function of polarization, for both the as-grown and disordered material for near-bandedge and half-bandedge wavelengths, which is the wavelength range 775-1550 nm. The largest effective refractive index shift observed was 9×10-2 which exceeds that previously reported for disordered AlGaAs ternary multilayer structures, and illustrates the potential of the superlattice for the fabrication of etch-free, planar optical components with large index contrast.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:42 ,  Issue: 3 )

Date of Publication:

March 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.