By Topic

Systematic photonic crystal device design: global and local optimization and sensitivity analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang Jiao ; Intel Corp., Santa Clara, CA, USA ; Shanhui Fan ; D. A. B. Miller

We present a set of modeling, sensitivity analysis, and design optimization methods for photonic crystal structures based on Wannier basis field expansion and efficient matrix analysis techniques. We develop the sensitivity analysis technique to analyze both refractive index perturbations and dielectric boundary shift perturbations. Our modeling method is ∼1000× faster than finite-difference time-domain (FDTD) for searching through a large number of similar device designs. We show that our optimization techniques, relying on the efficiency of the modeling and sensitivity analysis methods, enable systematic global and local optimizations of integrated optical components. We show that our design method can be controlled to favor designs without high-energy build-ups, potentially making them more fabrication-error tolerant. We present design examples and verify our designs with FDTD calculations.

Published in:

IEEE Journal of Quantum Electronics  (Volume:42 ,  Issue: 3 )