By Topic

Transfer-matrix method for the analysis of two parallel dissimilar nonuniform long-period fiber gratings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuen Ming Chan, F. ; Dept. of Electron. Eng., City Univ. of Hong Kong, China ; Kin Seng Chiang

A transfer-matrix method based on the coupled-mode theory is developed for the analysis of an all-fiber coupler consisting of two parallel long-period fiber gratings (LPFGs), which can be dissimilar and nonuniform. Using this method, the effects of various forms of nonuniformity introduced along the gratings on the transmission characteristics of the coupler are studied. The nonuniformities considered include pitch detuning, chirping, phase shifts, and index apodization. Numerical examples are given to highlight the conditions of achieving high coupling efficiency and the possibility of suppressing ripples and side lobes in the transmission spectrum. The obtained results are useful for the understanding and the design of various kinds of long-period grating-based devices, such as filters, broadband couplers, signal taps, and add/drop multiplexers.

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 2 )