By Topic

Enhancement of tolerance to MAIs by the synergistic effect between M-ary PAM and the chip-level receiver for optical CDMA systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Miyazawa, T. ; Dept. of Inf. & Comput. Sci., Keio Univ., Yokohama, Japan ; Sasase, Iwao

In this paper, an M-ary pulse-amplitude modulation (PAM) coded optical code division multiple access (CDMA) system applying the chip-level receiver with M-level threshold detection is proposed. First, in order to increase the number of transmitted bits per pulse, the PAM coded system is considered. However, when the correlator is applied in the receiver, the multiple access interferences (MAIs) with high intensities deteriorate the system performance significantly even if the number of MAIs is small. Consequently, the chip-level receiver with M-level threshold detection instead of the correlator in the M-ary PAM-CDMA system is proposed. The proposed system can obtain the synergistic effect between the PAM and the chip-level receiver, in which the chip-level receiver reduces more MAIs compared with the correlator and the PAM has the larger number of transmitted bits per frame than ON-OFF keying (OOK). As a result, the proposed system can increase the code length and the number of weights, and achieves higher tolerance to MAIs than the OOK-CDMA system with the chip-level receiver under the condition in which the chip duration, the bit rate, and the number of subscribers are kept constant. It is shown that the proposed M-ary PAM-CDMA system with the chip-level receiver achieves better bit error probability (BEP) than the OOK-CDMA system with the chip-level receiver.

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 2 )