Cart (Loading....) | Create Account
Close category search window
 

Facial expression recognition using kernel canonical correlation analysis (KCCA)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zheng, Wenming ; Res. Center for Learning Sci., Southeast Univ., Jiangsu, China ; Zhou, Xiaoyan ; Cairong Zou ; Li Zhao

In this correspondence, we address the facial expression recognition problem using kernel canonical correlation analysis (KCCA). Following the method proposed by Lyons et al. and Zhang et al. , we manually locate 34 landmark points from each facial image and then convert these geometric points into a labeled graph (LG) vector using the Gabor wavelet transformation method to represent the facial features. On the other hand, for each training facial image, the semantic ratings describing the basic expressions are combined into a six-dimensional semantic expression vector. Learning the correlation between the LG vector and the semantic expression vector is performed by KCCA. According to this correlation, we estimate the associated semantic expression vector of a given test image and then perform the expression classification according to this estimated semantic expression vector. Moreover, we also propose an improved KCCA algorithm to tackle the singularity problem of the Gram matrix. The experimental results on the Japanese female facial expression database and the Ekman's "Pictures of Facial Affect" database illustrate the effectiveness of the proposed method.

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 1 )

Date of Publication:

Jan. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.