By Topic

Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jinn-Tsong Tsai ; Dept. of Med. Inf. Manage., Kaohsiung Med. Univ., Taiwan ; Jyh-Horng Chou ; Tung-Kuan Liu

In this paper, a hybrid Taguchi-genetic algorithm (HTGA) is applied to solve the problem of tuning both network structure and parameters of a feedforward neural network. The HTGA approach is a method of combining the traditional genetic algorithm (TGA), which has a powerful global exploration capability, with the Taguchi method, which can exploit the optimum offspring. The Taguchi method is inserted between crossover and mutation operations of a TGA. Then, the systematic reasoning ability of the Taguchi method is incorporated in the crossover operations to select the better genes to achieve crossover, and consequently enhance the genetic algorithms. Therefore, the HTGA approach can be more robust, statistically sound, and quickly convergent. First, the authors evaluate the performance of the presented HTGA approach by studying some global numerical optimization problems. Then, the presented HTGA approach is effectively applied to solve three examples on forecasting the sunspot numbers, tuning the associative memory, and solving the XOR problem. The numbers of hidden nodes and the links of the feedforward neural network are chosen by increasing them from small numbers until the learning performance is good enough. As a result, a partially connected feedforward neural network can be obtained after tuning. This implies that the cost of implementation of the neural network can be reduced. In these studied problems of tuning both network structure and parameters of a feedforward neural network, there are many parameters and numerous local optima so that these studied problems are challenging enough for evaluating the performances of any proposed GA-based approaches. The computational experiments show that the presented HTGA approach can obtain better results than the existing method reported recently in the literature.

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 1 )