By Topic

A flexible structure for fully scalable motion-compensated 3-D DWT with emphasis on the impact of spatial scalability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mehrseresht, N. ; Sch. of Electr. Eng. & Telecommun., Univ. of New South Wales, Sydney, NSW, Australia ; Taubman, D.

We investigate the implications of the conventional "t+2-D" motion-compensated (MC) three-dimensional (3-D) discrete wavelet/subband transform structure for spatial scalability and propose a novel flexible structure for fully scalable video compression. In this structure, any number of levels of "pretemporal" spatial wavelet decomposition are performed on the original full resolution frames, followed by MC temporal decomposition of the subbands within each spatial resolution level. Further levels of "posttemporal" spatial decomposition may be performed on the spatiotemporal subbands to provide additional levels of spatial scalability and energy compaction. This structure allows us to trade energy compaction against the potential for artifacts at reduced spatial resolutions. More importantly, the structure permits extensive study of the interaction between spatial aliasing, scalability and energy compaction. We show that where the motion model fails, the "t+2-D" structure inevitably produces misaligned spatial aliasing artifacts in reduced resolution sequences. These artifacts can be removed by using pretemporal spatial decomposition. On the other hand, we also show that the "t+2-D" structure necessarily maximizes compression efficiency. We propose different schemes to minimize the loss of compression efficiency associated with pretemporal spatial decomposition.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 3 )