By Topic

Watermarking mesh-based representations of 3-D objects using local moments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
A. G. Bors ; Dept. of Comput. Sci., Univ. of York, UK

A new methodology for fingerprinting and watermarking three-dimensional (3-D) graphical objects is proposed in this paper. The 3-D graphical objects are described by means of polygonal meshes. The information to be embedded is provided as a binary code. A watermarking methodology has two stages: embedding and detecting the information that has been embedded in the given media. The information is embedded by means of local geometrical perturbations while maintaining the local connectivity. A neighborhood localized measure is used for selecting appropriate vertices for watermarking. A study is undertaken in order to verify the suitability of this measure for selecting vertices from regions where geometrical perturbations are less perceptible. Two different watermarking algorithms, that do not require the original 3-D graphical object in the detection stage, are proposed. The two algorithms differ with respect to the type of constraint to be embedded in the local structure: by using parallel planes and bounding ellipsoids, respectively. The information capacity of various 3-D meshes is analyzed when using the proposed 3-D watermarking algorithms. The robustness of the 3-D watermarking algorithms is tested to noise perturbation and to object cropping.

Published in:

IEEE Transactions on Image Processing  (Volume:15 ,  Issue: 3 )