Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Localization of abnormal EEG sources using blind source separation partially constrained by the locations of known sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Latif, M.A. ; Centre of Digital Signal Process., Cardiff Univ., UK ; Sanei, S. ; Chambers, J. ; Shoker, L.

Electroencephalogram (EEG) source localization requires a solution to an ill-posed inverse problem. The additional challenge is to solve this problem in the context of multiple moving sources. An effective and simple technique for both separation and localization of EEG sources is therefore proposed by incorporating an algorithmically coupled blind source separation (BSS) approach. The method relies upon having a priori knowledge of the locations of a subset of the sources. The cost function of the BSS algorithm is constrained by this information, and the unknown sources are iteratively calculated. An important application of this method is to localize abnormal sources, which, for example, cause changes in attention, movement, and behavior. In this application, the Alpha rhythm was considered as the known sources. Simulation studies are presented to support the potential of the approach in terms of source localization.

Published in:

Signal Processing Letters, IEEE  (Volume:13 ,  Issue: 3 )