By Topic

A key predistribution scheme for sensor networks using deployment knowledge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wenliang Du ; Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., NY, USA ; Jing Deng ; Han, Y.S. ; Varshney, P.K.

To achieve security in wireless sensor networks, it is important to be able to encrypt messages sent among sensor nodes. Keys for encryption purposes must be agreed upon by communicating nodes. Due to resource constraints, achieving such key agreement in wireless sensor networks is nontrivial. Many key agreement schemes used in general networks, such as Diffie-Hellman and public-key-based schemes, are not suitable for wireless sensor networks. Predistribution of secret keys for all pairs of nodes is not viable due to the large amount of memory used when the network size is large. Recently, a random key predistribution scheme and its improvements have been proposed. A common assumption made by these random key predistribution schemes is that no deployment knowledge is available. Noticing that, in many practical scenarios, certain deployment knowledge may be available a priori, we propose a novel random key predistribution scheme that exploits deployment knowledge and avoids unnecessary key assignments. We show that the performance (including connectivity, memory usage, and network resilience against node capture) of sensor networks can be substantially improved with the use of our proposed scheme. The scheme and its detailed performance evaluation are presented in this paper.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:3 ,  Issue: 1 )