Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Secondary electron emission and surface charging evaluation of alumina ceramics and sapphire

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Suharyanto ; Dept. of Electr. & Electron. Syst., Saitama Univ. ; Yamano, Y. ; Kobayashi, S. ; Michizono, S.
more authors

The breakdown of alumina rf windows is mostly caused by multipactor, as well as by material defects and contamination. Since multipator induces localized surface heating, leading to surface melting, it is necessary to observe secondary electron emission (SEE) coefficients of alumina ceramics under high temperature conditions. The SEE coefficients of commercial alumina ceramics and sapphire were measured by a scanning electron microscopy (SEM) with a single short-pulsed electron beam (100 pA, 1 ms) at room temperature and at 650degC. Additive materials used for sintering alumina, such as SiO 2 and MgO, were also investigated. Surface charging evaluations have also become important because the accumulated charges are discharged at the threshold Held, resulting in surface discharge. The surface charging evaluations were carried out by multi-pulse measurements with the injection of successive pulses on the sample. As a result, reductions in the SEE coefficients with temperature were confirmed, except for sapphire. The multi-pulse measurement results indicated that surface charging of the sapphire was higher than that of other samples. This may be one of the factors that causes sapphire not to be durable for rf window applications, compared with alumina ceramics. Although there are few exceptions, it was found that the SEE coefficients of alumina ceramics increased with the purity and the average grain size

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:13 ,  Issue: 1 )