By Topic

MPICH-V: Toward a Scalable Fault Tolerant MPI for Volatile Nodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)

Global Computing platforms, large scale clusters and future TeraGRID systems gather thousands of nodes for computing parallel scientific applications. At this scale, node failures or disconnections are frequent events. This Volatility reduces the MTBF of the whole system in the range of hours or minutes. We present MPICH-V, an automatic Volatility tolerant MPI environment based on uncoordinated checkpoint/roll-back and distributed message logging. MPICH-V architecture relies on Channel Memories, Checkpoint servers and theoretically proven protocols to execute existing or new, SPMD and Master-Worker MPI applications on volatile nodes. To evaluate its capabilities, we run MPICH-V within a framework for which the number of nodes, Channels Memories and Checkpoint Servers can be completely configured as well as the node Volatility. We present a detailed performance evaluation of every component of MPICH-V and its global performance for non-trivial parallel applications. Experimental results demonstrate good scalability and high tolerance to node volatility.

Published in:

Supercomputing, ACM/IEEE 2002 Conference

Date of Conference:

16-22 Nov. 2002