By Topic

A Comparative Study of the NAS MG Benchmark across Parallel Languages and Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chamberlain, B.L. ; University of Washington, Seattle ; Deitz, S.J. ; Snyder, L.

Hierarchical algorithms such as multigrid applications form an important cornerstone for scientific computing. In this study, we take a first step toward evaluating parallel language support for hierarchical applications by comparing implementations of the NAS MG benchmark in several parallel programming languages: Co-Array Fortran, High Performance Fortran, Single Assignment C, and ZPL. We evaluate each language in terms of its portability, its performance, and its ability to express the algorithm clearly and concisely. Experimental platforms include the Cray T3E, IBM SP, SGI Origin, Sun Enterprise 5500, and a high-performance Linux cluster. Our findings indicate that while it is possible to achieve good portability, performance, and expressiveness, most languages currently fall short in at least one of these areas. We find a strong correlation between expressiveness and a language’s support for a global view of computation, and we identify key factors for achieving portable performance in multigrid applications.

Published in:

Supercomputing, ACM/IEEE 2000 Conference

Date of Conference:

04-10 Nov. 2000