By Topic

Architectural and Performance Evaluation of GigaNet and Myrinet Interconnects on Clusters of Small-Scale SMP Servers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jenwei Hsieh ; Dell Computer Corporation ; Tau Leng ; Mashayekhi, V. ; Rooholamini, R.

GigaNet and Myrinet are two of the leading interconnects for clusters of commodity computer systems. Both provide memory-protected user-level network interface access, and deliver low-latency and high-bandwidth communication to applications. GigaNet is a connection-oriented interconnect based on a hardware implementation of Virtual Interface (VI) Architecture and Asynchronous Transfer Mode (ATM) technologies. Myrinet is a connection-less interconnect which leverages packet switching technologies from experimental Massively Parallel Processors (MPP) networks. This paper investigates their architectural differences and evaluates their performance on two commodity clusters based on two generations of Symmetric Multiple Processors (SMP) servers. The performance measurements reported here suggest that the implementation of Message Passing Interface (MPI) significantly affects the cluster performance. Although MPICH-GM over Myrinet demonstrates lower latency with small messages, the polling-driven implementation of MPICH-GM often leads to tight synchronization between communication processes and higher CPU overhead.

Published in:

Supercomputing, ACM/IEEE 2000 Conference

Date of Conference:

04-10 Nov. 2000