By Topic

Discrete optimization problems - some new heuristic approaches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Melnikov, B. ; Togliatti State Univ.

We consider in this paper some heuristic methods of decision-making in various discrete optimization problems. The object of each of these problems is programming anytime algorithms. Considered methods for solving these problems are constructed on the basis of special combination of some heuristics. We use some modifications of truncated branch-and-bound method; for the selecting immediate step, we apply dynamic risk functions; simultaneously for the selection of coefficients of the averaging-out, we use genetic algorithms; and the reductive self-learning by the same genetic methods is used for the start of truncated branch-and-bound method. This combination of heuristics represents a special approach to construction of anytime-algorithms for the discrete optimization problems, which is an alternative to the methods of linear programming, multi-agent optimization, and neuronets

Published in:

High-Performance Computing in Asia-Pacific Region, 2005. Proceedings. Eighth International Conference on

Date of Conference:

1-1 July 2005