Cart (Loading....) | Create Account
Close category search window
 

SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-on-fiber systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jun-Hyuk Seo ; Dept. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea ; Chang-Soon Choi ; Young-Shik Kang ; Yong-Duck Chung
more authors

We investigate a frequency up/down-converter based on a single cascaded semiconductor optical amplifier (SOA)-electroabsorption modulator (EAM) configuration for bi-directional 60-GHz-band radio-on-fiber (RoF) system applications. SOA cross-gain modulation and photodetection in EAM are used for frequency up-conversion, and EAM nonlinearity is used for frequency down-conversion. In our scheme, both 60-GHz local-oscillator (LO) signals and IF signals are optically transmitted from a central station to base stations. We characterize the dependence of frequency up/down-conversion efficiencies on EAM bias and optical LO power. For frequency up-conversion, maximum conversion gain of approximately 8 dB was obtained and, for frequency down-conversion, more than approximately 18-dB conversion loss was measured. Utilizing this frequency up/down converter, we demonstrate a 60-GHz bi-directional RoF link. Optically transmitted downlink 10-Mb/s quadrature phase-shift keying (QPSK) data at 100-MHz IF are frequency up-converted to the 60-GHz band at the base station, and uplink 10-Mb/s QPSK data in the 60-GHz band are frequency down-converted to 150-MHz IF and transmitted to the central station. In addition, the dependence of error vector magnitudes on IF signal power and wavelength is investigated.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 2 )

Date of Publication:

Feb. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.