By Topic

A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
S. T. Winnall ; Cochlear Ltd., Lane Cover, Australia ; A. C. Lindsay ; M. W. Austin ; J. Canning
more authors

A compact means to separate microwave and millimeter-wave optical signals by RF frequency in real time is demonstrated. The approach is to employ an integrated optical Bragg grating Fabry-Perot (BGFP) device to spatially separate optically modulated microwave signals with high resolution. The compactness is achieved through the use of an integrated optical hybrid diffractive lens beam expander to provide the required optical wavefront to the BGFP. A proof-of-principle measurement was performed from 1 to 23 GHz with peak finesse of 27. The theoretical analysis, fabrication procedure, experimental results, limitations, and improvements are described.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:54 ,  Issue: 2 )