Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Novel compact net-type resonators and their applications to microstrip bandpass filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chi-Feng Chen ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Huang, Ting-Yi ; Wu, Ruey-Beei

Novel compact net-type resonators and their practical applications to microstrip bandpass filters have been presented in this paper. Three kinds of filters are designed and fabricated to demonstrate the practicality of the proposed compact net-type resonators. In addition, by adjusting the structural parameters of the net-type resonators, the spurious frequencies can be properly shifted to higher frequencies. As a result, a three-pole Chebyshev net-type resonator filter with a fractional bandwidth (FBW) of 6.8% has a spurious resonance of up to 4.1f0, and it has more than 80% size reduction in comparison with the conventional U-shaped resonator filter. A four-pole quasi-elliptic net-type resonator filter with a FBW of 3.5% has a spurious resonance of up to 5f0, and it has approximately 67% size reduction in comparison with the cross-coupled open-loop resonator filter. A three-pole trisection net-type resonator filter with a FBW of 4.7% has a spurious resonance of up to 6.5f0, and its size is reduced by 68% in comparison with the trisection open-loop resonator filter. Consequently, each of the designed filters occupies a very small circuit size and has a good stopband response. The measured results are in good agreement with the full-wave simulation results by IE3D.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 2 )