By Topic

Error correction for diffraction and multiple scattering in free-space microwave measurement of materials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kai Meng Hock ; Temasek Labs., Nat. Univ. of Singapore, Singapore

Metamaterials often have sharp resonances in permittivity or permeability at microwave frequencies. The sizes of the inclusions are of the order of millimeters, and this means that it is more convenient to carry out the measurement in free space. Time gating is often used in the free-space method to remove multiple scattering from the antennas and the surrounding objects. However, this lowers the resolution in the frequency domain, making it difficult to resolve the resonances reliably. Diffraction around the sample could also reduce measurement accuracy. A calibration procedure, based on the 16-term error model, which removes the need for time gating by correcting for both multiple scattering and diffraction, is developed. This procedure is tested on carbonyl iron composite and split-ring resonators, and the results are presented.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 2 )