We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

An improved flux observer based on PLL frequency estimator for sensorless vector control of induction motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Comanescu, Mihai ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Longya Xu

This paper presents an improved method of flux estimation for sensorless vector control of induction motors based on a phase locked loop (PLL) programmable low-pass filter (LPF) and a vector rotator. A PLL synchronized with the voltage vector is used for stator frequency estimation. The pure integration of the stator voltage equations is difficult to implement and LPFs with a fixed cutoff provide good estimates only in the relatively high frequency range-at low frequencies, the estimates fail in both magnitude and phase. The method proposed corrects the above problem for a wide range of speeds. Simulations and experimental results on a 0.25-hp three-phase induction machine verify the validity of the approach.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:53 ,  Issue: 1 )